

Anchorpoint API Documentation

Release v. 0.7.0.

Anchorpoint is a Python library that supplies text substring selectors
for anchoring annotations. It includes helper methods for switching
between positional and contextual selectors, and it’s used for referencing
judicial opinions and statutes by
AuthoritySpoke [https://authorityspoke.readthedocs.io/].

Anchorpoint is licensed under the
Atmosphere Software License [https://open-austin.org/atmosphere-license/].

User Guides:

	Selecting Text with Anchorpoint
	Converting Between Selector Types

	Combining and Grouping Selectors

	Comparing Selectors and Sets

	Serializing Selectors

Development Updates

	Changelog

	GitHub

	Twitter

API Reference

	Text Selectors

	Text Sequences

Indices and tables

	Index

	Search Page

Selecting Text with Anchorpoint

Anchorpoint is a tool for labeling referenced passages within text documents,
in a format that allows the “anchors” to the referenced passages to be stored
and transmitted separately from the documents themselves. Anchorpoint has two
basic ways of selecting text: as text positions, or as text quotes. Here’s a demonstration
of creating a text string in Python and then using both kinds of text selectors.

>>> from anchorpoint import TextPositionSelector, TextQuoteSelector
>>> legal_text = (
... "Copyright protection subsists, in accordance with this title, "
... "in original works of authorship fixed in any tangible medium of expression, "
... "now known or later developed, from which they can be perceived, reproduced, "
... "or otherwise communicated, either directly or with the aid of a machine or device. "
... "Works of authorship include the following categories: "
... "literary works; musical works, including any accompanying words; "
... "dramatic works, including any accompanying music; "
... "pantomimes and choreographic works; "
... "pictorial, graphic, and sculptural works; "
... "motion pictures and other audiovisual works; "
... "sound recordings; and architectural works.")
>>> positions = TextPositionSelector(start=65, end=93)
>>> positions.select_text(legal_text)
'original works of authorship'
>>> quote = TextQuoteSelector(exact="in accordance with this title")
>>> quote.select_text(legal_text)
'in accordance with this title'

A TextPositionSelector works by identifying the positions of
the start and end characters within the text string object, while
a TextQuoteSelector describes the part of the text
that is being selected.

Sometimes a selected passage is too long to include in full in
the TextQuoteSelector.
In that case, you can identify the selection by specifying its prefix and suffix.
That is, the text immediately before and immediately after the text you want to select.

>>> quote = TextQuoteSelector(prefix="otherwise communicated, ", suffix=" Works of authorship")
>>> quote.select_text(legal_text)
'either directly or with the aid of a machine or device.'

If you specify just a suffix, then the start of your text selection is the beginning
of the text string. If you specify just a prefix, then your text selection continues to the end
of the text string.

>>> quote_from_start = TextQuoteSelector(suffix="in accordance with this title")
>>> quote_from_start.select_text(legal_text)
'Copyright protection subsists,'
>>> quote_from_end = TextQuoteSelector(prefix="sound recordings; and")
>>> quote_from_end.select_text(legal_text)
'architectural works.'

If you want to use a TextQuoteSelector to select
a particular instance of a phrase that appears more than once in the text, then you
can add a prefix or suffix in addition to the exact phrase to eliminate the
ambiguity. For example, this selector applies to the second instance of the word
“authorship” in the text, not the first instance.

>>> authorship_selector = TextQuoteSelector(exact="authorship", suffix="include")
>>> authorship_selector.select_text(legal_text)
'authorship'

Converting Between Selector Types

You can use the as_position() and
as_quote() methods
to convert between the two types of selector.

>>> authorship_selector.as_position(legal_text)
TextPositionSelector(start=306, end=316)
>>> positions.as_quote(legal_text)
TextQuoteSelector(exact='original works of authorship', prefix='', suffix='')

Combining and Grouping Selectors

Position selectors can be combined into a single selector that covers both spans of text.

>>> left = TextPositionSelector(start=5, end=22)
>>> right = TextPositionSelector(start=12, end=27)
>>> left + right
TextPositionSelector(start=5, end=27)

If two position selectors don’t overlap, then adding them returns a different
class called a TextPositionSet.

>>> from anchorpoint import TextPositionSet
>>> left = TextPositionSelector(start=65, end=79)
>>> right = TextPositionSelector(start=100, end=136)
>>> selector_set = left + right
>>> selector_set
TextPositionSet(positions=[TextPositionSelector(start=65, end=79), TextPositionSelector(start=100, end=136)], quotes=[])

The TextPositionSet can be used to select nonconsecutive passages of text.

>>> selector_set.select_text(legal_text)
'…original works…in any tangible medium of expression…'

If needed, you can use a TextPositionSet to
select text with a combination of both positions and quotes.

>>> text = "red orange yellow green blue indigo violet"
>>> position = TextPositionSelector(start=4, end=17)
>>> quote = TextQuoteSelector(exact="blue indigo")
>>> group = TextPositionSet(positions=[position], quotes=[quote])
>>> group.select_text(text)
'…orange yellow…blue indigo…'

You can also add or subtract an integer to move the text selection left or right, but
only the position selectors will be moved, not the quote selectors.

>>> earlier_selectors = group - 7
>>> earlier_selectors.select_text(text)
'red orange…blue indigo…'

Union and intersection operators also work.

>>> left = TextPositionSelector(start=2, end=10)
>>> right = TextPositionSelector(start=5, end=20)
>>> left & right
TextPositionSelector(start=5, end=10)

Comparing Selectors and Sets

The greater than and less than operators can be used to check whether one selector
or set covers the entire range of another. This is used to check whether one selector
only contains text that’s already within another selector.

>>> smaller = TextPositionSelector(start=4, end=8)
>>> overlapping = TextPositionSelector(start=6, end=50)
>>> overlapping > smaller
False
>>> superset = TextPositionSelector(start=0, end=10)
>>> superset > smaller
True

TextPositionSets also have a __gt__() method
that works in the same way.

>>> selector_set > TextPositionSelector(start=100, end=110)
True

Serializing Selectors

Anchorpoint uses Pydantic [https://pydantic-docs.helpmanual.io/] to
serialize selectors either to Python dictionaries
or to JSON strings suitable for sending over the internet with APIs.

>>> authorship_selector.json()
'{"exact": "authorship", "prefix": "", "suffix": "include"}'
>>> selector_set.dict()
{'positions': [{'start': 65, 'end': 79}, {'start': 100, 'end': 136}], 'quotes': []}

Pydantic’s data loading methods mean that you can also create the data for an
Anchorpoint selector using nested dictionaries, and then load it with the class’s
constructor method.

>>> data = {'positions': [{'start': 65, 'end': 79}, {'start': 100, 'end': 136}]}
>>> TextPositionSet(**data)
TextPositionSet(positions=[TextPositionSelector(start=65, end=79), TextPositionSelector(start=100, end=136)], quotes=[])

You can also get a valid OpenAPI schema [https://pydantic-docs.helpmanual.io/usage/schema/],
for using Anchorpoint selectors in an API that you design.

>>> TextPositionSelector.schema_json()
'{"title": "TextPositionSelector", "description": "Describes a textual segment by start and end positions.\\n\\nBased on the Web Annotation Data Model `Text Position Selector\\n<https://www.w3.org/TR/annotation-model/#text-position-selector>`_ standard\\n\\n:param start:\\n The starting position of the segment of text.\\n The first character in the full text is character position 0,\\n and the character is included within the segment.\\n\\n:param end:\\n The end position of the segment of text.\\n The character is not included within the segment.", "type": "object", "properties": {"start": {"title": "Start", "default": 0, "type": "integer"}, "end": {"title": "End", "type": "integer"}}}'

Changelog

0.7.0 (2021-10-09)

	passing TextPositionSet to from_selection_sequence doesn’t cause error

	fix bug: Range with end “Inf” caused string slicing error

	add TextPositionSet.from_quotes

	remove TextSelector class

	start_less_than_end is no longer a root_validator

0.6.1 (2021-09-23)

	python-ranges by Superbird11 is imported instead of vendored

0.6.0 (2021-09-19)

	TextPositionSelector no longer inherits from Range

	TextPositionSet no longer inherits from RangeSet

	TextPositionSelector no longer has real_start and real_end that can differ from start and end

	Selectors and TextPositionSets are Pydantic models

	TextSelector is Pydantic model for either Quote or Position Selector

	remove Marshmallow schemas

	update type annotations for TextPositionSelector.from_range

	add TestQuoteSelector.as_unique_position method

	TextPositionSet can include TextQuoteSelectors

	add convert_quotes_to_positions method to TextPositionSet

	replace TextPositionSet.selectors field with positions and quotes

	change as_quote_selector method to as_quote

	TextPositionSet.add_margin includes quotes

	fix bug: subtracting int from selector set caused quotes to be lost

	add __ge__ and __gt__ methods for TextPositionSelector

	add Selecting Text with Anchorpoint guide

0.5.3 (2021-08-11)

	change readme to .rst

	use setup.py instead of setup.cfg

0.5.2 (2021-08-02)

	TextPositionSet can be made from list of tuples

	long passage in exception is truncated

0.5.1 (2021-05-15)

	improper shorthand for selector raises TextSelectionError

0.5.0 (2021-05-07)

	add TextPositionSelector.from_text constructor

	Range constructor interprets None as 0

	fix bug: union with TextPositionSet should return TextPositionSet

	add PositionSelectorSchema, for when a selector can’t be a TextQuoteSelector

0.4.4 (2021-01-25)

	provide “missing” instead of “optional” argument for marshmallow schema

	add TextPositionSetFactory.from_exact_strings

	SelectorSchema.expand_anchor_shorthand takes only a string argument

	TextPositionSetFactory.from_selection will accept a Sequence of mixed types

0.4.3 (2020-12-11)

	TextPositionSelector serializer dumps .real_start and .real_end

	TextPositionSelector serializer omits “include_start” and “include_end”

	TextPositionSelector serializer orders fields so “start” comes before “end”

	disallow zero-length TextPositionSelectors

0.4.2 (2020-08-30)

	create TextPositionSelector .real_start and .real_end

	create TextPositionSet.add_margin

0.4.1 (2020-08-29)

	TextPositionSetFactory will accept list of strings

	subtracting more than start value is no longer IndexError, but more than end value is

	TextSequence quoting from empty string doesn’t start with None

0.4.0 (2020-08-08)

	TextPositionSet can output a TextSequence

	create TextSequence addition method

0.3.3 (2020-07-28)

	fix bug: leading whitespace when selecting from prefix

0.3.2 (2020-07-22)

	fix bug where adding selectors converted them to parent class

	add TextSelectionError exception

0.3.1 (2020-07-19)

	add left and right margin parameters to TextPositionSelector.as_quote_selector

	as_quotes method for TextSelectorSet

	enable adding int to TextSelectorSet

	fix class name in repr for TextSelectorSet

0.3.0 (2020-07-18)

	add TextQuoteSelector.from_text shortcut

	add ability to subtract an integer from all values in a TextPositionSet

	include [marshmallow](https://github.com/marshmallow-code/marshmallow) schema for serializing

0.2.1 (2020-05-21)

	add init file to utils directory

0.2.0 (2020-05-21)

	Make TextPositionSelector subclass Range from [python-ranges](https://github.com/Superbird11/ranges).

0.1.1 (2019-12-01)

	add init file to tests directory

0.1.0 (2019-11-30)

	Create TextPositionSelector and TextQuoteSelector classes

GitHub

You can find open issues and current changes to anchorpoint through its
GitHub repo [https://github.com/mscarey/anchorpoint].

Twitter

On Twitter, you can follow @authorityspoke [https://twitter.com/authorityspoke]
or @mcareyaus [https://twitter.com/mcareyaus] for project updates.

Text Selectors

Text substring selectors for anchoring annotations.

Based on parts of the W3C Web Annotation Data
Model [https://www.w3.org/TR/annotation-model/].

	
class anchorpoint.textselectors.TextPositionSelector(**data)

	Describes a textual segment by start and end positions.

Based on the Web Annotation Data Model Text Position Selector [https://www.w3.org/TR/annotation-model/#text-position-selector] standard

	Parameters

	
	start – The starting position of the segment of text.
The first character in the full text is character position 0,
and the character is included within the segment.

	end – The end position of the segment of text.
The character is not included within the segment.

	
__add__(value)

	Make a new selector covering the combined ranges of self and other.

	Parameters

	
	other – selector for another text interval

	margin – allowable distance between two selectors that can still be added together

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][TextPositionSelector, TextPositionSet, None [https://docs.python.org/3/library/constants.html#None]]

	Returns

	a selector reflecting the combined range if possible, otherwise None

	
__and__(other)

	Make a new selector covering the intersection of the ranges of self and other.

	Parameters

	other (Union [https://docs.python.org/3/library/typing.html#typing.Union][TextPositionSelector, TextPositionSet, Range, RangeSet]) – selector for another text interval

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TextPositionSelector]

	Returns

	a selector reflecting the range of the intersection

	
__ge__(other)

	Return self>=value.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__gt__(other)

	Check if self is greater than other.

	Parameters

	other (Union [https://docs.python.org/3/library/typing.html#typing.Union][TextPositionSelector, TextPositionSet]) – selector for another text interval

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	whether self is greater than other

	
__hash__ = None

	

	
__or__(other)

	Make a new selector covering the combined ranges of self and other.

	Parameters

	other (Union [https://docs.python.org/3/library/typing.html#typing.Union][TextPositionSelector, TextPositionSet, Range, RangeSet]) – selector for another text interval

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][TextPositionSelector, TextPositionSet]

	Returns

	a selector reflecting the combined range

	
as_quote(text, left_margin=0, right_margin=0)

	Make a quote selector, creating prefix and suffix from specified lengths of text.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	left_margin (int [https://docs.python.org/3/library/functions.html#int]) – number of characters to look backward to create TextQuoteSelector.prefix

	right_margin (int [https://docs.python.org/3/library/functions.html#int]) – number of characters to look forward to create TextQuoteSelector.suffix

	Return type

	TextQuoteSelector

	
combine(other, text)

	Make new selector combining ranges of self and other if it will fit in text.

	
difference(other)

	Get selectors in self or other but not both.

Applies Range difference, method replacing RangeSet
with TextPositionSet in return value.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][TextPositionSet, TextPositionSelector]

	
classmethod from_range(range)

	Make TextPositionSelector with same extent as a Range object from python-ranges.

	Return type

	TextPositionSelector

	
classmethod from_text(text, start=0, end=None)

	Make position selector including the text strings “start” and “end” within “text”.

	Return type

	TextPositionSelector

	
range()

	Get the range of the text.

	Return type

	Range

	
rangeset()

	Get the range set of the text.

	Return type

	RangeSet

	
select_text(text)

	Get the quotation from text identified by start and end positions.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod start_less_than_end(v, values)

	Verify start position is before the end position.

	Returns

	the end position, which after the start position

	
classmethod start_not_negative(v)

	Verify start position is not negative.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	the start position, which is not negative

	
subtract_integer(value)

	Reduce self’s startpoint and endpoint by an integer.

	Return type

	TextPositionSelector

	
unique_quote_selector(text)

	Add text to prefix and suffix as needed to make selector unique in the source text.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	Return type

	TextQuoteSelector

	
verify_text_positions(text)

	Verify that selector’s text positions exist in text.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
class anchorpoint.textselectors.TextPositionSet(**data)

	A set of TextPositionSelectors.

	
__add__(value)

	Increase all startpoints and endpoints by the given amount.

	Parameters

	value (Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], TextPositionSelector, TextPositionSet]) – selector for another text interval, or integet to add to every
start and end value in self’s position selectors

	Return type

	TextPositionSet

	Returns

	a selector reflecting the combined range if possible, otherwise None

	
__ge__(other)

	Test if self’s rangeset includes all of other’s rangeset.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__gt__(other)

	Test if self’s rangeset includes all of other’s rangeset, but is not identical.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__hash__ = None

	

	
__str__()

	Return str(self).

	
__sub__(value)

	Decrease all startpoints and endpoints by the given amount.

	Return type

	TextPositionSet

	
add_margin(text, margin_width=3, margin_characters=', ."\\' ;[]()')

	Expand selected position selectors to include margin of punctuation.

This can cause multiple selections to be merged into a single one.

Ignores quote selectors.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text that passages are selected from

	margin_width (int [https://docs.python.org/3/library/functions.html#int]) – The width of the margin to add

	margin_characters (str [https://docs.python.org/3/library/stdtypes.html#str]) – The characters to include in the margin

	Return type

	TextPositionSet

	Returns

	A new TextPositionSet with the margin added

>>> from anchorpoint.textselectors import TextPositionSetFactory
>>> text = "I predict that the grass is wet. (It rained.)"
>>> factory = TextPositionSetFactory(text=text)
>>> selectors = [TextQuoteSelector(exact="the grass is wet"), TextQuoteSelector(exact="it rained")]
>>> position_set = factory.from_selection(selection=selectors)
>>> len(position_set.ranges())
2
>>> new_position_set = position_set.add_margin(text=text)
>>> len(new_position_set.ranges())
1
>>> new_position_set.ranges()[0].start
15
>>> new_position_set.ranges()[0].end
43

	
as_quotes(text)

	Copy self’s quote and position selectors, converting all position selectors to quote selectors.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][TextQuoteSelector]

	
as_string(text)

	Return a string representing the selected parts of text.

>>> selectors = [TextPositionSelector(start=5, end=10)]
>>> selector_set = TextPositionSet(positions=selectors)
>>> sequence = selector_set.as_text_sequence("Some text.")
>>> selector_set.as_string("Some text.")
'…text.'

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
as_text_sequence(text, include_nones=True)

	List the phrases in a text passage selected by this TextPositionSet.

	Parameters

	
	passage – A passage to select text from

	include_nones (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the list of phrases should include None to indicate a block of
unselected text

	Return type

	TextSequence

	Returns

	A TextSequence of the phrases in the text

>>> selectors = [TextPositionSelector(start=5, end=10)]
>>> selector_set = TextPositionSet(positions=selectors)
>>> selector_set.as_text_sequence("Some text.")
TextSequence([None, TextPassage("text.")])

	
convert_quotes_to_positions(text)

	Return new TextPositionSet with all quotes replaced by their positions in the given text.

	Return type

	ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef]

	
classmethod from_quotes(selection)

	Construct TextPositionSet from string or TextQuoteSelectors.

If a string is used, it will be converted to a TextQuoteSelector with no prefix or suffix.

	Return type

	TextPositionSet

	
classmethod from_ranges(ranges)

	Make new class instance from Range objects from python-ranges library.

	Return type

	TextPositionSet

	
merge_rangeset(rangeset)

	Merge another RangeSet into this one, returning a new TextPositionSet.

	Parameters

	rangeset (RangeSet) – the RangeSet to merge

	Return type

	ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef]

	Returns

	a new TextPositionSet representing the combined ranges

	
classmethod order_of_selectors(v)

	Ensure that selectors are in order.

	
positions_as_quotes(text)

	Copy self’s position selectors, converted to quote selectors.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][TextQuoteSelector]

	
positions_of_quote_selectors(text)

	Convert self’s quote selectors to position selectors for a given text.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][TextPositionSelector]

	
classmethod quote_selectors_are_in_list(selectors)

	Put single selector in list and convert strings to selectors.

	
quotes_rangeset(text)

	Get ranges where these quotes appear in the provided text.

	Return type

	RangeSet

	
ranges()

	Get positions as Range objects from python-ranges library.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Range]

	
rangeset()

	Convert positions into python-ranges Rangeset.

	Return type

	RangeSet

	
select_text(text, margin_width=3, margin_characters=', ."\\' ;[]()')

	Return the selected text from text.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text that passages are selected from

	margin_width (int [https://docs.python.org/3/library/functions.html#int]) – The width of the margin to add

	margin_characters (str [https://docs.python.org/3/library/stdtypes.html#str]) – The characters to include in the margin

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The selected text

>>> from anchorpoint.textselectors import TextPositionSetFactory
>>> text = "I predict that the grass is wet. (It rained.)"
>>> factory = TextPositionSetFactory(text=text)
>>> selectors = [TextQuoteSelector(exact="the grass is wet"), TextQuoteSelector(exact="it rained")]
>>> position_set = factory.from_selection(selection=selectors)
>>> position_set.select_text(text=text)
'…the grass is wet. (It rained…'

	
classmethod selectors_are_in_list(selectors)

	Put single selector in list.

	
class anchorpoint.textselectors.TextPositionSetFactory(text)

	Factory for constructing TextPositionSet from text passages and various kinds of selector.

	
__init__(text)

	Store text passage that will be used to generate text selections.

	
__weakref__

	list of weak references to the object (if defined)

	
from_bool(selection)

	Select either the whole passage or none of it.

	Return type

	TextPositionSet

	
from_exact_strings(selection)

	Construct TextPositionSet from a sequence of strings representing exact quotations.

First converts the sequence to TextQuoteSelectors, and then to TextPositionSelectors.

	Return type

	TextPositionSet

	
from_quote_selectors(quotes)

	Construct TextPositionSet from a sequence of TextQuoteSelectors.

	Return type

	TextPositionSet

	
from_selection(selection)

	Construct TextPositionSet for a provided text passage, from any type of selector.

	Return type

	TextPositionSet

	
from_selection_sequence(selections)

	Construct TextPositionSet from one or more of: strings, Quote Selectors, and Position Selectors.

First converts strings to TextQuoteSelectors, and then to TextPositionSelectors.

	Return type

	TextPositionSet

	
class anchorpoint.textselectors.TextQuoteSelector(**data)

	Describes a textual segment by quoting it, or passages before or after it.

Based on the Web Annotation Data Model Text Quote Selector [https://www.w3.org/TR/annotation-model/#text-quote-selector] standard

	Parameters

	
	exact – a copy of the text which is being selected

	prefix – a snippet of text that occurs immediately before the text which
is being selected.

	suffix – the snippet of text that occurs immediately after the text which
is being selected.

	
__hash__ = None

	

	
as_position(text)

	Get the interval where the selected quote appears in “text”.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	Return type

	TextPositionSelector

	Returns

	the position selector for the location of the exact quotation

	
as_unique_position(text)

	Get the interval where the selected quote appears in “text”.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	Return type

	TextPositionSelector

	Returns

	the position selector for the location of the exact quotation

	
find_match(text)

	Get the first match for the selector within a string.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – text to search for a match to the selector

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Match]

	Returns

	a regular expression match, or None

>>> text = "process, system, method of operation, concept, principle"
>>> selector = TextQuoteSelector(exact="method of operation")
>>> selector.find_match(text)
<re.Match object; span=(17, 36), match='method of operation'>

	
classmethod from_text(text)

	Create a selector from a text string.

“prefix” and “suffix” fields may be created by separating part
of the text with a pipe character (“|”).

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	Return type

	TextQuoteSelector

	Returns

	a selector for the location of the exact quotation

>>> text = "process, system,|method of operation|, concept, principle"
>>> selector = TextQuoteSelector.from_text(text)
>>> selector.prefix
'process, system,'
>>> selector.exact
'method of operation'
>>> selector.suffix
', concept, principle'

	
is_unique_in(text)

	Test if selector refers to exactly one passage in text.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	whether the passage appears exactly once

	
classmethod no_none_for_prefix(value)

	Ensure that ‘prefix’, ‘exact’, and ‘suffix’ are not None.

	
passage_regex()

	Get regex to identify the selected text.

	
prefix_regex()

	Get regex for the text before any whitespace and the selection.

	
rebuild_from_text(text)

	Make new selector with the “exact” value found in a given text.

Used for building a complete selector when exact has not
been specified.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TextQuoteSelector]

	Returns

	a new selector with the “exact” value found in the provided text

	
select_text(text)

	Get the passage matching the selector, minus any whitespace at ends.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – the passage where an exact quotation needs to be located.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	the passage between prefix and suffix in text.

>>> text = "process, system, method of operation, concept, principle"
>>> selector = TextQuoteSelector(prefix="method of operation,")
>>> selector.select_text(text)
'concept, principle'

	
static split_anchor_text(text)

	Break up shorthand text selector format into three fields.

Tries to break up the string into prefix,
exact,
and suffix, by splitting on exactly two pipe characters.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string or dict representing a text passage

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], …]

	Returns

	a tuple of the three values

	
suffix_regex()

	Get regex for the text following the selection and any whitespace.

	
exception anchorpoint.textselectors.TextSelectionError

	Exception for failing to select text as described by user.

	
__weakref__

	list of weak references to the object (if defined)

Text Sequences

	
class anchorpoint.textsequences.TextPassage(text)

	A contiguous passage of text.

Can be used to compare passages while disregarding end punctuation.

	
means(other)

	Test if passages have the same text, disregarding end puncutation.

	Parameters

	other (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TextPassage]) – the other passage to test against

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if the two passages have the same text, False otherwise

>>> TextPassage("Hello, world.").means(TextPassage("Hello, world"))
True
>>> TextPassage("Hello world").means(TextPassage("Hello, world"))
False

	
class anchorpoint.textsequences.TextSequence(passages=None)

	Sequential passages of text that need not be consecutive.

Unlike a Legislice [https://legislice.readthedocs.io/] Enactment, a
TextSequence does not preserve the tree structure
of the quoted document.

	
__add__(other)

	Combine TextSequences by merging their selected TextPassages.

	Return type

	TextSequence

	
__ge__(other)

	Return self>=value.

	
__gt__(other)

	Return self>value.

	
__init__(passages=None)

	Make new TextSequence from TextPassage list.

	Parameters

	passages (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TextPassage]]]) – the text passages included in the TextSequence, which should be chosen
to express a coherent idea. “None”s in the sequence represent spans of
text that exist in the source document, but that haven’t been chosen
to be part of the TextSequence.

	
__repr__()

	Return repr(self).

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
means(other)

	Test if all the passages in self and other correspond with each other.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
strip()

	Remove symbols representing missing text from the beginning and end.

	Return type

	TextSequence

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 anchorpoint	

 	
 	
 anchorpoint.textselectors	

Index

 _
 | A
 | C
 | D
 | F
 | I
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__add__() (anchorpoint.textselectors.TextPositionSelector method)

 	(anchorpoint.textselectors.TextPositionSet method)

 	(anchorpoint.textsequences.TextSequence method)

 	__and__() (anchorpoint.textselectors.TextPositionSelector method)

 	__ge__() (anchorpoint.textselectors.TextPositionSelector method)

 	(anchorpoint.textselectors.TextPositionSet method)

 	(anchorpoint.textsequences.TextSequence method)

 	__gt__() (anchorpoint.textselectors.TextPositionSelector method)

 	(anchorpoint.textselectors.TextPositionSet method)

 	(anchorpoint.textsequences.TextSequence method)

 	__hash__ (anchorpoint.textselectors.TextPositionSelector attribute)

 	(anchorpoint.textselectors.TextPositionSet attribute)

 	(anchorpoint.textselectors.TextQuoteSelector attribute)

 	
 	__init__() (anchorpoint.textselectors.TextPositionSetFactory method)

 	(anchorpoint.textsequences.TextSequence method)

 	__or__() (anchorpoint.textselectors.TextPositionSelector method)

 	__repr__() (anchorpoint.textsequences.TextSequence method)

 	__str__() (anchorpoint.textselectors.TextPositionSet method)

 	(anchorpoint.textsequences.TextSequence method)

 	__sub__() (anchorpoint.textselectors.TextPositionSet method)

 	__weakref__ (anchorpoint.textselectors.TextPositionSetFactory attribute)

 	(anchorpoint.textselectors.TextSelectionError attribute)

 	(anchorpoint.textsequences.TextSequence attribute)

A

 	
 	add_margin() (anchorpoint.textselectors.TextPositionSet method)

 	
 anchorpoint.textselectors

 	module

 	as_position() (anchorpoint.textselectors.TextQuoteSelector method)

 	
 	as_quote() (anchorpoint.textselectors.TextPositionSelector method)

 	as_quotes() (anchorpoint.textselectors.TextPositionSet method)

 	as_string() (anchorpoint.textselectors.TextPositionSet method)

 	as_text_sequence() (anchorpoint.textselectors.TextPositionSet method)

 	as_unique_position() (anchorpoint.textselectors.TextQuoteSelector method)

C

 	
 	combine() (anchorpoint.textselectors.TextPositionSelector method)

 	
 	convert_quotes_to_positions() (anchorpoint.textselectors.TextPositionSet method)

D

 	
 	difference() (anchorpoint.textselectors.TextPositionSelector method)

F

 	
 	find_match() (anchorpoint.textselectors.TextQuoteSelector method)

 	from_bool() (anchorpoint.textselectors.TextPositionSetFactory method)

 	from_exact_strings() (anchorpoint.textselectors.TextPositionSetFactory method)

 	from_quote_selectors() (anchorpoint.textselectors.TextPositionSetFactory method)

 	from_quotes() (anchorpoint.textselectors.TextPositionSet class method)

 	
 	from_range() (anchorpoint.textselectors.TextPositionSelector class method)

 	from_ranges() (anchorpoint.textselectors.TextPositionSet class method)

 	from_selection() (anchorpoint.textselectors.TextPositionSetFactory method)

 	from_selection_sequence() (anchorpoint.textselectors.TextPositionSetFactory method)

 	from_text() (anchorpoint.textselectors.TextPositionSelector class method)

 	(anchorpoint.textselectors.TextQuoteSelector class method)

I

 	
 	is_unique_in() (anchorpoint.textselectors.TextQuoteSelector method)

M

 	
 	means() (anchorpoint.textsequences.TextPassage method)

 	(anchorpoint.textsequences.TextSequence method)

 	
 	merge_rangeset() (anchorpoint.textselectors.TextPositionSet method)

 	
 module

 	anchorpoint.textselectors

N

 	
 	no_none_for_prefix() (anchorpoint.textselectors.TextQuoteSelector class method)

O

 	
 	order_of_selectors() (anchorpoint.textselectors.TextPositionSet class method)

P

 	
 	passage_regex() (anchorpoint.textselectors.TextQuoteSelector method)

 	positions_as_quotes() (anchorpoint.textselectors.TextPositionSet method)

 	
 	positions_of_quote_selectors() (anchorpoint.textselectors.TextPositionSet method)

 	prefix_regex() (anchorpoint.textselectors.TextQuoteSelector method)

Q

 	
 	quote_selectors_are_in_list() (anchorpoint.textselectors.TextPositionSet class method)

 	
 	quotes_rangeset() (anchorpoint.textselectors.TextPositionSet method)

R

 	
 	range() (anchorpoint.textselectors.TextPositionSelector method)

 	ranges() (anchorpoint.textselectors.TextPositionSet method)

 	
 	rangeset() (anchorpoint.textselectors.TextPositionSelector method)

 	(anchorpoint.textselectors.TextPositionSet method)

 	rebuild_from_text() (anchorpoint.textselectors.TextQuoteSelector method)

S

 	
 	select_text() (anchorpoint.textselectors.TextPositionSelector method)

 	(anchorpoint.textselectors.TextPositionSet method)

 	(anchorpoint.textselectors.TextQuoteSelector method)

 	selectors_are_in_list() (anchorpoint.textselectors.TextPositionSet class method)

 	split_anchor_text() (anchorpoint.textselectors.TextQuoteSelector static method)

 	
 	start_less_than_end() (anchorpoint.textselectors.TextPositionSelector class method)

 	start_not_negative() (anchorpoint.textselectors.TextPositionSelector class method)

 	strip() (anchorpoint.textsequences.TextSequence method)

 	subtract_integer() (anchorpoint.textselectors.TextPositionSelector method)

 	suffix_regex() (anchorpoint.textselectors.TextQuoteSelector method)

T

 	
 	TextPassage (class in anchorpoint.textsequences)

 	TextPositionSelector (class in anchorpoint.textselectors)

 	TextPositionSet (class in anchorpoint.textselectors)

 	
 	TextPositionSetFactory (class in anchorpoint.textselectors)

 	TextQuoteSelector (class in anchorpoint.textselectors)

 	TextSelectionError

 	TextSequence (class in anchorpoint.textsequences)

U

 	
 	unique_quote_selector() (anchorpoint.textselectors.TextPositionSelector method)

V

 	
 	verify_text_positions() (anchorpoint.textselectors.TextPositionSelector method)

 nav.xhtml

 Table of Contents

 		
 Anchorpoint API Documentation

 		
 Selecting Text with Anchorpoint

 		
 Converting Between Selector Types

 		
 Combining and Grouping Selectors

 		
 Comparing Selectors and Sets

 		
 Serializing Selectors

 		
 Changelog

 		
 0.7.0 (2021-10-09)

 		
 0.6.1 (2021-09-23)

 		
 0.6.0 (2021-09-19)

 		
 0.5.3 (2021-08-11)

 		
 0.5.2 (2021-08-02)

 		
 0.5.1 (2021-05-15)

 		
 0.5.0 (2021-05-07)

 		
 0.4.4 (2021-01-25)

 		
 0.4.3 (2020-12-11)

 		
 0.4.2 (2020-08-30)

 		
 0.4.1 (2020-08-29)

 		
 0.4.0 (2020-08-08)

 		
 0.3.3 (2020-07-28)

 		
 0.3.2 (2020-07-22)

 		
 0.3.1 (2020-07-19)

 		
 0.3.0 (2020-07-18)

 		
 0.2.1 (2020-05-21)

 		
 0.2.0 (2020-05-21)

 		
 0.1.1 (2019-12-01)

 		
 0.1.0 (2019-11-30)

 		
 GitHub

 		
 Twitter

 		
 Text Selectors

 		
 Text Sequences

_static/plus.png

_static/file.png

_static/minus.png

_static/stitch.jpg

